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Diffusion-limited aggregates (DLA’s) are grown on square-lattice DLA’s in order to see such an an-
isotropy in small-scaled clusters as seen in large square-lattice DLA’s and in order to probe square-
lattice DLA’s with random walks. To find physical origins of the anisotropy, we have grown such
DLA'’s by different growth rules in which hopping directions of random walks and the choice of growth

sites are varied.
PACS number(s): 64.60.Qb, 05.60.+w, 81.10.Dn

Even though diffusion-limited aggregation (DLA) [1]
has successfully explained a broad range of nonequilibri-
um growths and aggregation process [2—-5], the complete
theoretical understanding of DLA has not been achieved.
One of the main controversies on DLA is the strong
dependence of the asymptotic structure of DLA on the
underlying lattice structure [6—12]. The cluster shape of
DLA on continuous media with the fractal dimension
D ~1.7 is nearly isotropic [4]. But on a square lattice,
the envelopes of DLA clusters containing about 10° parti-
cles are cross shaped and D of such DLA’s is about 1.55
[7,8]. To understand the anisotropy of a large square-
lattice DLA’s (SDLA’s) several studies have been done by
varying deposition rules [9,10] or by deterministic
growths [11]. To see this anisotropy at small-scaled clus-
ters and to understand the physical origin of the anisotro-
py, noise-reduced DLA’s (or anisotropy-enhanced
DLA’s) [5,13—-15] have been studied on two-dimensional
lattices and it has been found that the anisotropy be-
comes more enhanced as the noise reduction parameter
m increases. These results on SDLA suggest that there is
a competition between the anisotropy provided by the
underlying lattice and the randomness due to stochastic
motions of incoming particles [2].

The object of this study is to grow DLA clusters of a
small scale on a SDLA cluster [double DLA (DDLA)
clusters] by using several different growth rules in order
to see what make the clusters anisotropic or to find out
which part of the growth algorithm is crucial to aniso-
tropic DDLA clusters. DDLA clusters are grown by re-
peating the following four steps. (i) We put the seed on
the seed site of an SDLA cluster. (ii) A particle which
starts from a point on a starting circle continues a certain
kind of random walker’s (RW’s) on a square lattice until
the particle reaches a growth site of the DDLA cluster.
(iii) If the growth site is occupied by a particle of the
SDLA cluster, then the particle is attached to the DDLA
cluster. (iv) Otherwise, the particle is abandoned and a
new particle starts. We believe that this process is
equivalent to a probe of SDLA with a given kind of RW’s,
because during the growth of a DDLA cluster, particles
which do RW’s of a chosen kind on a square lattice, for
deposition (or being attached), look for the growth sites
which have already been occupied by particles of the
SDLA cluster.

To apply our growth rules we should choose the kind
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of RW’s and growth sites. In an ordinary DLA model [4]
the hopping directions of RW’s on a square lattice are
constrained to those along the four bonds which connect
the site where the random walker is and four nearest
neighbors (NN’s) [Fig. (a)]. To know the effect of hop-
ping directions of RW’s on the structure of a cluster we
also consider hopping directions along diagonals of fun-
damental plaquettes on a square lattice which connect
the site where the random walker is and four next nearest
neighbors (NNN’s) [Fig. 1(b)]. In an ordinary DLA mod-
el only vacant NN’s of a site in the cluster are allowed to
be growth sites [Fig. 1(c)]. To know the effects of the
choice of growth sites on the structure of a cluster, we
also allow vacant NNN’s of a site in the cluster as growth
sites [Fig. 1(d)]. All SDLA clusters in this paper are as-
sumed to be grown by the normal growth rule which is
based on the combination of RW’s in Fig. 1(a) and the
deposition rule in Fig. 1(c): [(ac) rule]. However we grow
DDLA clusters on SDLA clusters by several different
growth rules. Such growth rules are as follows. The first
and most important growth rule is of course the (ac) rule.
The second rule is based on a combination of RW’s in
Fig. 1(a) and both NN’s and NNN’s of any site in a clus-
ter as chosen growth sites [(acd) rule]. The third rule is
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FIG. 1. (a) RW’s with the directions of hopping along lattice
bonds (unfilled circle denotes a site where the random walker
is). (b) RW’s with the directions of hopping along the diagonals
of a plaquette of a square lattice. (c) NN’s (filled circles) to a
site in DDLA clusters (unfilled circle). (d) NNN’s (filled circles)
to a site in DDLA clusters.
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based on a combination of RW’s in Fig. 1(b) and only
NN’s of any site in a cluster as chosen growth sites [(bc)
rule]. The final rule is based on a combination RW’s in
Fig. 1(b) and both NN’s and NNN’s of any site in a clus-
ter as chosen growth sites [(bcd) rule].

If the anisotropy of SDLA clusters is due to a mecha-
nism which makes the growth of clusters along the axes
of the square lattice easier than along the diagonal direc-
tions, we expect that (ac) rule with steps (i)—(iv) make
DDLA clusters grow along the axes more strongly than
SDLA clusters themselves and we believe that such an
anisotropy can be seen at a much smaller scale than the
scale at which SDLA clusters show the anisotropy. The
algorithm for the growth of DDLA clusters can be ap-
plied repeatedly and hierarchically as one can grow DLA
clusters on DDLA clusters [TDLA (triple DLA) clusters]
and so forth. We then get a sequence of DLA clusters
starting from a SDLA cluster. If our expectation about
the anisotropy in DLA clusters is right, then the more
enhanced anisotropy should appear as the number of
hierarchical repetitions of the (ac) rule with steps (i)-(iv)
increases.

Now let us discuss our simulation results. Since we
want to grow DDLA clusters of a small scale, we have
used five SDLA clusters which have 15000 particles
grown by the (ac) rule. Such SDLA clusters are more or
less isotropic with the fractal dimension D ~1.7 [7]. Let
us first discuss the results for DDLA clusters which have
been grown by the (ac) rule with steps (i)-(iv), i.e., by the
normal growth rule. We have grown four DDLA clus-
ters with 3000 particles on each of such five SDLA clus-
ters and let us call these 20 DDLA clusters (ac) DDLA
clusters. In Fig. 2, we have shown two of four DDLA
clusters grown on a SDLA cluster. The (ac) DDLA clus-
ter in Fig. 2(a) has grown mainly along axes of the square
lattice and we can see the expected anisotropy well. The
DDLA cluster in Fig. 2(b) has a main branch grown
along an off-axis direction. We have grown several DLA
clusters (i.e., TDLA clusters) on the DDLA cluster in

(c)

FIG. 2. (a) An (ac) DDLA cluster on a SDLA cluster in
which we can see the expected anisotropy rather well. (Two
straight lines are the lattice axes through the seed.) (b) Another
DDLA cluster which has a main branch grown off the lattice
axes. (c) A TDLA cluster on the DDLA cluster in (b). We can
see the shortened off-axis branches.
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Fig. 2(b) by (ac) rule, and one such TDLA cluster with
more enhanced anisotropy is shown in Fig. 2(c). By grow-
ing (ac) TDLA clusters on (ac) DDLA clusters we have
seen the inclination that the anisotropy gets more and
more enhanced if the number of the hierarchical repeti-
tions of the (ac) rule increases as in Fig. 2(c).

A quantitative analysis of the anisotropy in (ac) DDLA
clusters is shown in Fig. 3. (N(0)) in Fig. 3 is defined as
what follows. If the coordinate of ith particle in a cluster
is (x;,y;) in the coordinate system with the origin at the
seed and whose x axis and y axis are the same as two lat-
tice axes through the seed, then one can assign the angle
6; to the particle as 6; =arctan(y; /x;). Then N(6) d0 is
the number of particles in the sector between the angle 6
and 6+d0. N (0) of course satisfies the relation

f:”1v<9)de=zvmt : (1)

where N, is the total number of particles in a cluster. In
Fig. 3 (N(0)) means the average of N(6) over (ac)
DDLA clusters. We see clearly that { N(0)) has four ma-
jor peaks and the peaks are located approximately at 0°,
90°, 180°, and 270°. In Fig. 4 we have also displayed
(N(6)) for the SDLA clusters with 15000 particles
which we have used as base clusters for DDLA clusters.
In Fig. 4 we cannot find such major peaks as clearly as in
Fig. 3. To compare (ac) DDLA clusters to differently
grown DDLA clusters, we have also grown three more
kinds of DDLA clusters with 3000 particles on the same
five SDLA clusters by the (acd) rule, the (bc) rule, and the
(bcd) rule. The angular distributions of the particles,
(N(0))’s, for the three kinds of 20 DDLA clusters by
(ac), (bc), and (bed) rules are displayed in Fig. 5. We can-
not see four peaks in Fig. 5 as clearly as in Fig. 3. How-
ever among the three curves in Fig. 5 that for the (acd)
rule manifests the anisotropy more clearly than the other
two curves. These results imply that the hopping direc-
tions of RW’s are a more important part of the growth
rule for making the clusters anisotropic than the choice
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FIG. 3. The relation of {N(6)) to angle 6 for (ac) DDLA
clusters.
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FIG. 4. The relation of {N(8)) to angle 0 for base SDLA
clusters.

of growth sites, because clusters by the (ac) rule and those
by the (acd) rule show the anisotropy more clearly than
clusters by the (bc) and the (bcd) rule.

The length / and the width w of main branches of a
cluster can be define through the relations

1= max(|x;|,|y;,|)/N=AN"I -

and

w= 3 min(|x;|,|y;|)/N=BN™*, 3)

where N is the number of particles in the cluster during
the growth. The results for the dependence of the aver-
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FIG. 5. The relations of {N(6))’s to angle @ for different

DDLA clusters. The dotted curve is for clusters grown by the
(acd) rule. The normal curve is for those by the (bc) rule. The
dashed curve is for those by the (bcd) rule.

aged (/) and (w) over (ac) DDLA clusters are
displayed in Fig. 6. The estimates for the exponents v,
and v, are v;=0.651+0.01~1 and v,=0.56+0.02. Com-
paring these estimates to those for ordinary SDLA clus-
ters with the size of 4X10° [7], the envelopes of (ac)
DDLA clusters are diamond shaped which we can see
only in SDLA clusters of the size of 10° or more. We
have also analyzed the relations of I’s to N and the rela-
tions of w’s to N for DDLA clusters by (bc), by (bcd), and
by (acd) rules and have found v z% for these clusters, but

data for w’s did not satisfy the power law w =BN "1 well.
The analyses of (/) and (w) imply that the anisotropy
in (ac) DDLA clusters of a small scale is eminent, but the
anisotropy cannot be seen clearly in the other kinds of
DDLA clusters.

The final conclusions are briefly as follows. The growth
of DDLA clusters is a good probe of SDLA clusters, be-
cause we can see such an anisotropy quite well in (ac)
DDLA clusters of 3000 particles as seen in SDLA clus-
ters at a much larger scale. By comparing differently
grown DDLA clusters we have also found that the hop-
ping directions of RW’s are the more important part of
the growth rule for the anisotropy than the choice of
growth sites.

We now want to give final discussions. The first dis-
cussion is a comparison of our growth model to noise re-
duced (or anisotropy enhanced) models [5,13-15]. In or-
der to add a site to a DDLA cluster two walkers have to
arrive at the same site, one when the SDLA is grown and
the second when DDLA is generated. In the noise-
reduced model with noise-reduction parameter m a site
must be visited by RW’s at least m times to be added to
the cluster. Thus two growing methods have nearly the
same influence on the growth of a site and the results of
both seem to be qualitatively the same. One of the main
merits of our model is that on a given SDLA cluster
several different kinds of DDLA clusters can be grown by
applying different growth rules and then we can under-

In N

FIG. 6. The relation of the averaged length (/) and width
{w) over (ac) DDLA clusters to the particle number N.
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stand which part of growth rule is important to make the
resulting cluster anisotropic. In contrast, it is difficult to
grow several different kinds of clusters in a noise-reduced
model. Even though the relationship between SDLA and
DDLA has not been well established on a theoretical
basis, a partial clue to understanding the physical origin
of large-scaled SDLA clusters is given by the results from
the growth of the several differently grown DDLA clus-
ters of a small scale.

One might doubt why the size of the DDLA clusters in
this paper is confined to the size of 3000 particles. There
are two crucial reasons for this. One is related to proper-
ties of SDLA clusters which we have used as base clus-
ters. If the particles of SDLA clusters are about 10° then
the envelopes of the clusters are diamond shaped [7], and
thus to study the anisotropy in a DDLA cluster grown on
such large SDLA clusters is meaningless. For our motiva-
tion the maximum size of SDLA clusters should be
around 50000. The second one is based on the fact that
the size of a DDLA cluster should be much smaller than
that of the SDLA cluster. When the size of a DDLA
cluster is comparable to that of the SDLA cluster, the

shape of the DDLA cluster must be nearly the same as
the SDLA cluster itself because of steps (iii) and (iv), and
thus to study the DDLA cluster of this size is physically
meaningless. Another reason for the existence of the
upper bound for the size of a DDLA cluster is that after
the tip of a small branch of SDLA cluster is occupied by
a particle in a DDLA cluster, it is unnatural to grow the
DDLA cluster further. Our choice is to grow DDLA
clusters of 3000 particles on SDLA clusters of 15000 par-
ticles. If one chooses the SDLA clusters of 50000 parti-
cles which we think are the largest SDLA clusters for our
purpose, the maximum cluster size of DDLA clusters
which satisfies the above-mentioned reasons is less than
10000. The properties of DDLA clusters of that size do
not deviate significantly from those of our clusters.
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